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I. INTRODUCTION

There is a long history of the use of renormalization-
group ideas in describing turbulence. In the profound books
of McComb �1,2� and Frisch �3�, one can find an extensive
review on this subject. Among fundamental papers in the
field are papers by Martin, Siggia, and Rose �4�; Forster,
Nelson, and Stephen �5�; and Yakhot and Orszag �6�. The
Navier-Stokes equation with random stirring forces is used
as a mathematical model of turbulence in these fruitful but
very sophisticated approaches. In contrast to these ap-
proaches, we propose here a mathematical model of devel-
oped turbulence that is based on special self-similar solutions
of the Euler equation—therefore we do not need to introduce
the external stirring forces. In our approach, we do not use
the Fourier transform, perturbation series, or the sophisti-
cated diagramic technique. The term “renormalization
group” is broadly used in a variety of scenarios. At times,
this term is used in situations where the transformation
groups are not even considered. In our paper, we apply the
idea of a renormalization group in its initial sense �7–9�. In
relation to turbulence, we can roughly express Kadanoff’s
idea of “block picture” for the spin field in Ising’s model as
follows: If, instead of turbulent field v�r�, we consider a field
�v���r� that is averaged on the scale �, then the last one will
“resemble” the original turbulent field v�r�. The exact sense
of “resemble” must be defined by the group of transforma-
tions for both fields and equations for these fields. Classical
approaches �8,9� do not initially present the explicit expres-
sion for transformations from a renormalization group; they
are provided, accurate to some unknown functions. There-
fore, classical renormalization-group methods on the first
step only exploit the fact that the symmetry exists. The trans-
formations are then obtained in approximate form while con-
sidering the problem in the required range of the transforma-
tion parameter.

In this paper, solely on the basis of the Navier-Stokes
equation, we propose a simple model of homogeneous sta-
tionary developed turbulence. This model allows us to ex-
plicitly derive the group of renormalization transformations.
We average the Navier-Stokes equation over some small
length scale �0 with the help of our averaging formula. Then
we transform this averaged equation by a renormalization-

group transformation to the equation for the average over
any scale � velocity field �v���r , t�, making use of symmetry
properties of the base solution. Note that Frisch in his pro-
found book �3� writes about applying the symmetries of Eu-
ler and Navier-Stokes equations in turbulence but he does
not associate turbulence with the specific self-similar solu-
tions of the Euler equation.

II. RENORMALIZED AVERAGING FORMULA

In different areas of physics �turbulence, kinetic theory,
radiophysics, nonlinear dynamics�, the averaged equations
include the mean value of nonlinear terms. The fundamental
problem in developing tractable quantitative theories is the
closure of these equations. Specifically, the problem is ob-
taining the explicit expression for the averaged product of
two functions in terms of their mean values. This section
addresses this problem.

We derive the renormalized averaging formula on the ba-
sis of group properties of the specially chosen averaging pro-
cedure �Gaussian filtering�. The method by which this for-
mula has been obtained is similar to the method �10� used to
rewrite �exactly� the Boltzmann collision integral in the di-
vergence form. For simplicity, the analysis is initially per-
formed for one space dimension and then extended for the
general case of three �or more� dimensions.

Consider two functions v�x� and u�x� depending on one-
dimensional real coordinate x ,−��x��. The average of
v�x� is

�v��x� = �
−�

�

v�x����x − x��dx�, �1�

where ��x� is a weight function. When this function is
Gaussian,

���x� =
1

�4��
e−x2/4�, �2�

the average is defined by Gauss transform �filtering�,

�v��x� = �
−�

�

v�x�����x − x��dx� = Ĝ�v . �3�

The Gaussian distribution verifies the diffusion equation,
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�

��
���x� = �2���x�, where �2 =

�2

�x2 , �4�

thereby the Gauss transform operator �3� can be represented
in the exponential form

Ĝ� = e��2
�5�

and has the following group properties:

Ĝ�1
Ĝ�2

= Ĝ�1+�2
. �6�

Consider the averaged product of two fields,

�vu��x� = Ĝ�v�x�u�x� = e��2
v�x�u�x� . �7�

In this expression, the differentiation of the product of two
multipliers can be done by the Leibnitz rule. To this end,
decompose the differentiation operator � into two parts,

� = �1 + �2, �8�

with differentiation operators �1 and �2 acting on the first
v�x� and the second u�x� multipliers, respectively. Setting
Eq. �8� in Eq. �7� gives

e��2
v�x�u�x� = e���1 + �2�2

v�x�u�x�

= e2��1�2e���1
2+�2

2�v�x�u�x�

= e2��1�2�e��2
v�x���e��2

u�x�� . �9�

It then follows that, according to Eqs. �3� and �5�, the aver-
age of the product of two fields can be written as

�vu� = e2��1�2�v��u� . �10�

Representing the operator of averaging of two fields products
e2��1�2 by its Taylor-series expansion yields the Leonard
expression �11�,

e2��1�2�v��u� = 	
n=0

�
1

n!
�2��n
 �n

�xn �v��
 �n

�xn �u�� . �11�

The formulas �10� and �11� allow us to express �at least
formally� the mean of the product of the two functions
through the mean values of multipliers. The simplest way of
using Eq. �11� is by using only the first few terms, which
provides a good approximation for averaging smooth func-
tions. However, in the case of highly oscillating fields, such a
simplification leads to substantial error, leading to the neces-
sity of accounting, in principle, for all terms in Eq. �11�.

Instead of using the Taylor-series expansion with an infi-
nite number of terms �11� for the averaging operator e2��1�2,
we propose using the Taylor series with a residual term,

e2��1�2 = 1 + 2��1�2 +
1

2!
�2��1�2�2 + ¯

+
1

�n − 1�!
�2��1�2�n−1

+
1

n!
�2��1�2�n�

0

1

d�qn���e2���1�2, �12�

where n is an arbitrary natural number �n=1, 2, 3,…� and

qn��� = n�1 − ��n−1, �
0

1

d�qn��� = 1. �13�

Consider the case n=1. Then Eq. �12� is reduced to

e2��1�2 = 1 + 2��1�2�
0

1

d�e2���1�2. �14�

Taking into account that

e2���1�2+��1
2+��2

2
= e����1 + �2�2+�1−�����1

2+�2
2� �15�

yields

�vu�� = �v���u�� + 2��
0

1

d�Š��v��1−��� � �u��1−���‹��.

�16�

Substituting ��= �1−���, expression �16� takes the follow-
ing form:

�vu�� = �v���u�� + 2�
0

�

d��Š��v��� · � �u���‹�−��.

�17�

This averaging expression demonstrates that the integral part
includes the contribution of all scales less than � in an exact
manner. Note that Eq. �17� is written for three dimensions by
replacing �� on the scalar product of three-dimensional
nabla operators � ·�.

Two examples of applying the averaging formula.

First example

We decompose the velocity field into smooth and random
components,

vi�r� = vi
sm + vi

rnd�r� , �18�

where vi
sm and vi

rnd�r� represent the smooth �on the scale less
than �, we consider vi

sm to be constant, �lvi
sm=0 � and ran-

dom parts, respectively. For the random part, we introduce
the internal scale ����, where the fluid viscosity damps out
the velocity oscillations and vi

rnd�r� becomes a smooth func-
tion. Thus

�vi
rnd��� = 0 if �� � ��, �19�

�vi
rnd��� = vi

rnd�r� if �� � ��. �20�

Assumptions �18�–�20� yield

��lvi��� = �l�vi
rnd��� = 0 if �� � ��, �21�

��lvi��� = ��lvi
rnd��� = �lvi if �� � ��. �22�

The averaging formula �17� under the conditions �21� and
�22� gives
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�vivk�� = �vi���vk�� + 2����lvi�lvk��, �23�

where the repeated indices are summed. Hence, for the field
�18�–�20�, one obtains the expression for the internal scale
�� through mean quantities �independently of averaging
scale ��,

�� =
�v2�� − �vi���vi��

2��lvi�lvi��

. �24�

This expression is similar to the known turbulence expres-
sion for the Taylor microscale.

Second example

Consider the velocity field in the framework of the fol-
lowing model. Assume that in a region of a typical size L, the
velocity field can be represented as

vi�r� = wi + aijrj + vi
rnd�r� , �25�

where wi and aij are constants �they do not depend on r in the
considered region but do change from one region to another�
and vi

rnd�r� is an isotropic random field. This implies that the
considered region is rectilinearly moving as a whole, rotating
and homogeneously stretching. The liquid particles inside
this region have random isotropic velocities. For the field
�25�, we have

�l�mvi = �l�mvi
rnd. �26�

Using the averaging formula �10� and �12� with n=2 for the
velocity field �25� yields

�vivk�� = �vi���vk�� + 2��l�vi���l�vk��

+ 2�
0

�

d��2��
Š��l1

�l2
vi

rnd�����l1
�l2

vk
rnd���‹�−��

,

�27�

where l1 , l2=1,2,3. Accounting for isotropy of the random
field, the integral term is proportional to the Kronecker delta
	ik,

�vivk�� = �vi���vk�� + 2��l1
�vi���l1

�vk��

+
2

3
	ik�

0

�

d��2��
Š��l1

�l2
vl3

rnd�����l1
�l2

vl3
rnd���‹�−��

.

�28�

Thus, for the model �25�, the deviatoric part of the stress
tensor can be expressed through the averaged velocity field
in closed form,

�vivk�� −
1

3
	ik�v2�� = �vi���vk�� −

1

3
	ik�vl1

���vl1
��

+ 2�
�l1
�vi���l1

�vk��

−
1

3
	ik�l1

�vl2
���l1

�vl2
��� . �29�

Let us make the following important remark regarding the

averaging formula �10� and �12�. Starting from Boussinesq,
in papers devoted to deriving equations for averaged turbu-
lent fields, it is usual to use the averaging formula on the
basis of the gradient-diffusion hypothesis,

�vivk�� −
1

3
	ik�v2�� − ��vi���vk�� −

1

3
	ik�v��

2
�

= − 
tur��i�vk�� + �k�vi��� . �30�

However, if the velocity field vi�r� in Eq. �30� is replaced by
ṽi�r�=−vi�r�, we obtain

�ṽiṽk�� −
1

3
	ik�ṽ2�� − ��ṽi���ṽk�� −

1

3
	ik�ṽ��

2
�

= + 
tur��i�ṽk�� + �k�ṽi��� . �31�

Inevitably, from Eqs. �30� and �31�, one of two fields vi�r , t�
or ṽi�r , t� has negative turbulent viscosity. Thus, through av-
eraging, it is impossible to derive the universal gradient-type
formula of form �30�. In other words, one cannot obtain the
turbulent viscosity in equations for turbulence by simple
averaging of the nonlinear term. The following sections
show how the turbulent viscosity can be introduced in a
natural way.

III. GROUP-THEORETICAL MODEL OF DEVELOPED
TURBULENCE

Hereafter, we present a schematic description of the tur-
bulent model, which is solely based on the Euler equation for
incompressible flow,

�v
�t

= − � · vv − � p, � · v = 0, � = 1. �32�

In some features, our further analysis will be similar to one
used in �12�. The symmetry transformation properties of Eq.
�32� are known. We will consider continuous symmetry
transformations of Eq. �32� where the time variable is not
transforming: scaling r→e�r ,v→e�v; rotation r
→e���r ,v→e���v; and translation r→r+�v. These trans-
formations constitute a group and induce the group of the
velocity field transformations. The generators of its one-
parameter subgroups are the operators that are the linear
combination of scaling, translation, and rotation generators,

q̂�,�,v� = �1 − r · � � − v · � − � · r � � + �� � � .

�33�

Subgroup elements read as ĝ�=e�q̂, where � is a subgroup
transformation parameter,

ĝ�1
ĝ�2

= ĝ�1+�2
. �34�

The constants  ,v ,�, as will be seen from Eqs. �37�, have
the following physical meaning:  is the rate �relative to
parameter �� of the homogeneous scaling, v is the velocity of
translation, and � is the angular velocity of rotation. The
three generators q̂1= q̂�1 ,�1 ,v1� , q̂2= q̂�2 ,�2 ,v2�, and
q̂3= q̂�3 ,�3 ,v3� with three different values of the constants
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 ,� ,v have the following commutation relations:

�q̂1, q̂2� = q̂3, 3 = 0, �3 = �1 � �2,

v3 = − v12 + v1 � �2 + �1 + �1 � �v2. �35�

For further consideration, it is useful to present e�q̂ as a
product of three transformations: scaling, rotation, and
translation,

e�q̂�,�,v� = e��1−r·��e������−�·r���e−R·�,

R = �
0

�

d�e��+���v . �36�

An action of these operators on velocity field v�r� is as fol-
lows:

e��1−r·��v�r� = e�v�e−�r� ,

e������−�·r���v�r� = e���v�e−���r� ,

e−R·�v�r� = v�r − R� . �37�

The symmetry of Eqs. �32� is then expressed by

e�q̂ � · vv = � · �e�q̂v��e�q̂v�, e�q̂ � p = � p�,

� · �e�q̂v� = 0. �38�

We propose to associate the phenomena of stationary tur-
bulence with self-similar solutions of the Euler equation �32�
in relevance to symmetry subgroups �33�–�35�. The self-
similar solution implies its dependence on time through the
parameter of the space symmetry transformation only, i.e.,

v�r,t� = e�t−t0�q̂v�r,t0� . �39�

Application of the space symmetry transformation e�q̂ to this
self-similar velocity field leads to its time translation,

e�q̂v�r,t� = e�t+�−t0�q̂v�r,t0� = v�r,t + �� . �40�

Substituting Eq. �39� into the Euler equation �32� and using
symmetry properties �38�, we obtain an equation, which, at
each time moment, defines the spatial configuration of the
self-similar solution :

q̂v = − � · vv − � p, � · v = 0. �41�

The evolution in time of a such self-similar solution v�r , t� is
governed by the simple equation. Following Eq. �39�, it
reads

�v
�t

= q̂v . �42�

Let us consider the space-time structure of self-similar ve-
locity fields �39�. Requiring solution �39� to be dynamically
stationary, the velocity field v�r , t� must be represented by a
superposition of time harmonics ei�t with real �. Then it
follows from Eq. �40� that expansion coefficients v��r� are
eigenfields of the generator q̂ corresponding to the pure
imaginary eigenvalues

v�r,t� = v�=0 + 	
�

A��t�v��r� , �43�

A��t� = ei��t−t0�A��t0�, q̂v��r� = i�v��r�, − � � � � � .

�44�

Equation �44� indicates that in Eq. �43�, only phases of co-
efficients A� change during the time evolution of turbulent
velocity field v�r , t�. Transformation �44� decorrelates phases
of A� with different �. The phases of A� are stochastic and,
in principle, unknown for turbulent state. Therefore, only
symmetry characteristics that are relevant to symmetry sub-
group with generator �33� �rate of the homogeneous scaling,
; velocity of translation, v; and angular velocity of rotation,
��, the static component v�=0, and the power spectrum �A��2
characterize the turbulent state in our model.

The following important statement emerges from this
model: the turbulent field with parameters  ,� ,v is invari-
ant under transformation e�q̂�,�,v� �accurate to the change of
phases of coefficients A�, which are immaterial for the tur-
bulent state�,

e�q̂�,�,v�v�,�,v�=
Av

v�,�,v� . �45�

Indeed, applying the operator e�q̂�,�,v� to the velocity field
�43� leads only to the phase change of the decomposition
coefficients A��A�→ei��A��. Hereafter, we will skip the
symbol Av, and writing “invariance of the turbulent velocity
field,” the sentence “accurate to the change of stochastic
phases” will be omitted for the sake of simplicity.

Let us now consider the averaged turbulent velocity
fields. Taking into account that the commutator of �2 with
generators q̂ is

��2, q̂� = − 2�2, �46�

the Lie algebra of generators q̂� ,� ,v� is extended by add-
ing the generator �2 to it. As a result, we obtain the algebra
��q̂� ,� ,v� ,��2� and the corresponding transformation

group e�q̂�,�,v�+��2
, which we will call the Euler equation

renormalization group. From Eq. �46�, one derives

e�q̂e��2
e−�q̂ = e�e2����2

, �47�

e��2
e�q̂e−��2

= e��q̂−2��2�. �48�

The operator e��q̂−2��2� can be represented as a product of
two operators in two forms,

e��q̂−2��2� = e��1−e2���2
e�q̂ = e�q̂e��e−2�−1��2

. �49�

We introduce an averaged velocity field using the Gauss
weight function with scale �,

�v�� = e��2
v�r� =

1

�4���3/2 � dr�e−�r − r��2/4�v�r�� .

�50�

The invariance �45� for turbulent fields provides the corre-
sponding invariance for averaged turbulent fields �v��. Using
Eqs. �48�, �50�, and �45� we obtain the expression of the
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renormalization-group symmetry transformation for aver-
aged fields,

e��q̂−2��2��v�� = e��2
e�q̂e−��2

�v�� = e��2
e�q̂v = e��2

v = �v��.

�51�

Using Eq. �49�, this equation can be rewritten in an equiva-
lent form,

e��q̂�v��0
= �v��, �52�

where

�� =
1


ln� �

�0
�53�

and

��q̂ = ln� �

�0
�1 − r · � � +

1


ln� �

�0

��− v · � − � · r � � + �� � �� . �54�

Therefore, for stationary homogeneous turbulence with sym-
metry characteristics  ,� ,v, the change of the scale of av-
eraging from �0 to � is equivalent to the composition of
scaling, rotation, and translation transformations. Note also
that the scaling coefficient �� /�0 in Eq. �54� depends only
on initial �0 and final � scales of averaging and does not
depend on turbulence parameters  ,� ,v. We call the prop-
erty �51� and �52� a renormalization-group invariance of av-
eraged turbulent fields.

Strictly speaking, the velocity fields �43� describe real tur-
bulent flows only locally. In different regions of the flow, the
symmetry characteristics  ,� ,v may be different. It is re-
markable that �as will be seen later�, the renormalization pro-
cedure, developed in Sec. IV, does not depend on specific
values of  ,� ,v �only the fact of a renormalization-group
invariance �52� is used�. If  ,� ,v are slowly varying in the
physical space �and in time�, this procedure can be applied to
an inhomogeneous case also.

IV. RENORMALIZATION OF THE AVERAGED NAVIER-
STOKES EQUATION

We will study the case when characteristics of turbulence
are changing in space and time slowly. Consider now the
Navier-Stokes equation

�v
�t

+ � · vv + � p − 
�2v = 0, � · v = 0, � = 1.

�55�

First, we average this equation using a Gauss weight func-
tion with some small scale �0. Concerning this scale, we
assume that �0 is the inner threshold of the turbulence such
that, on scales larger than �0 ,���0, we have Euler turbu-
lence with self-similarity according to Eq. �52�. On the scales
of order or less than �0 ,���0, we assume that the fluid
viscosity destroys the internal symmetry structure of turbu-
lence �52� and the velocity pulsations become purely isotro-

pic �25�. Therefore, acting on Eq. �55� by the Gauss trans-
form e�0�2

and making use of the averaging formula in form
�29�, we have

��v��0

�t
+ � · ��v��0

�v��0
+ 2�0�l�v��0

�l�v��0
� + � p�

= 
�2�v��0
,

� · �v��0
= 0. �56�

The exact determination of the inner threshold scale �0 of
turbulence is an open problem. Here we propose a simple
method of estimating its value. The gradients of the velocity
field tend to destroy the continuous structure of flow due to
nonlinear steeping while the viscosity processes smooth over
the flow. Equate these two factors on the basis of dimen-
sional consideration to derive the equation for �0. The anti-
symmetric part, which is connected with the rotation as a
whole, must be excluded from gradient �v,




�0
= c��Sik��0

�Sik��0
�1/2, �57�

where

�Sik�� =
1

2
��i�vk�� + �k�vi��� �58�

and c is some unknown constant. From Eq. �57�, we obtain
the expression for the inner threshold scale of turbulence,

�0 =



c��Sik��0
�Sik��0

�1/2 . �59�

Excluding molecular viscosity 
 from Eq. �56� with the help
of Eq. �57�, we have

��v��0

�t
+ � · ��v��0

�v��0
+ 2�0�l�v��0

�l�v��0
� + � p�

= 
tur��0��2�v��0
, �60�

where


tur��0� = c�0��Sik��0
�Sik��0

�1/2 = 
 . �61�

Equation �60� has two additional terms in comparison with
the Euler equation �32�. Under the transformation e�q̂, they
transform as follows:

e�q̂ � · ��l�v��0
�l�v��0

�

= e2� � · ��l�e�q̂�v��0
��l�e�q̂�v��0

�� , �62�

e�q̂
tur��0�e−�q̂ = e−2�
tur�e2��0� , �63�

e�q̂�2�v��0
= e2��2�e�q̂�v��0

� . �64�

With this result, when transformation e��q̂ with ��

= �1/�ln�� /�0 is applied to Eq. �56�, along with the invari-
ance property �52�, we obtain the final equation for the av-
eraged turbulent field for any scale ���0,
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��v��

�t
+ � · ��v���v�� + 2��l�v���l�v��� + � p�

= 
tur����2�v��,


tur��� = c���Sik���Sik���1/2, � · �v�� = 0. �65�

The equations for averaged fields �65� are similar to the
known equations of Leonard �13� applied in the LES ap-
proach �14� �the small difference is that the dissipative term
with molecular viscosity is, in principle, not present here�. It
is important to stress that we have shown that the turbulent
viscosity appeared not as a result of averaging of the nonlin-
ear term in the Navier-Stokes equation, but from the molecu-
lar viscosity term with the help of renormalization-group
transformation.

The renormalization-group symmetry of our model pro-
vided invariance of Eq. �65� under the scale transformation,
which involves changing the averaging scale �,

eln ��r·�+2���/���−1��v���r,t� =
1

�
�v��2���r,t� , �66�

where � is a scaling parameter.

V. CONCLUDING REMARKS

In this work, we obtained the regularized averaging for-
mula for averaging a two velocity field product. Assuming
that on the small length scale �0 �inner threshold of the tur-
bulence�, the turbulent velocity field can be approximated as
the sum of a smooth velocity field and a random isotropic
field, we averaged the Navier-Stokes equation over this small
scale by making use of our averaging formula. Solely on the
basis of the Euler equation and its symmetry properties, we
proposed the model of stationary homogeneous turbulence.
We proposed to associate the phenomena of stationary turbu-
lence with the special self-similar solutions �43� of the Euler
equation �32�—they represent the linear superposition of
eigenfields of the symmetry subgroup generators correspond-
ing to the pure imaginary eigenvalues. From this model, in
particular, it follows that for stationary homogeneous turbu-
lence, the change of the scale of averaging from �0 to �
is equivalent to the composition of scaling, rotation, and
translation transformations. We call this property a
renormalization-group invariance of averaged turbulent
fields. Because the Navier-Stokes equation is invariant under
translations and rotations, the renormalization group invari-
ance provides an opportunity to transform the averaged
Navier-Stokes equation over a small scale �0 to any scale �
by simple scaling.
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